Correcting Measurement Error Bias in Interaction Models with Small Samples

نویسندگان

  • Josep Bisbe
  • Germà Coenders
  • Willem E. Saris
  • Joan Manuel Batista-Foguet
چکیده

Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Multiple imputation to correct for measurement error in admixture estimates in genetic structured association testing.

OBJECTIVES Structured association tests (SAT), like any statistical model, assumes that all variables are measured without error. Measurement error can bias parameter estimates and confound residual variance in linear models. It has been shown that admixture estimates can be contaminated with measurement error causing SAT models to suffer from the same afflictions. Multiple imputation (MI) is p...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

TESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS

In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006